Probabilistic Models over Ordered Partitions with Application in Learning to Rank
نویسندگان
چکیده
This paper addresses the general problem of modelling and learning rank data with ties. We propose a probabilistic generative model, that models the process as permutations over partitions. This results in super-exponential combinatorial state space with unknown numbers of partitions and unknown ordering among them. We approach the problem from the discrete choice theory, where subsets are chosen in a stagewise manner, reducing the state space per each stage significantly. Further, we show that with suitable parameterisation, we can still learn the models in linear time. We evaluate the proposed models on the problem of learning to rank with the data from the recently held Yahoo! challenge, and demonstrate that the models are competitive against well-known rivals.
منابع مشابه
Probabilistic Models over Ordered Partitions with Applications in Document Ranking and Collaborative Filtering
Ranking is an important task for handling a large amount of content. Ideally, training data for supervised ranking would include a complete rank of documents (or other objects such as images or videos) for a particular query. However, this is only possible for small sets of documents. In practice, one often resorts to document rating, in that a subset of documents is assigned with a small numbe...
متن کاملGeometry of rank tests
We study partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. These permutations are the linear extensions of partially ordered sets specified by the data. Our methods refine rank tests of non-parametric statistics, such as the sign test and the runs test, and a...
متن کاملConvex Rank Tests and Semigraphoids
Convex rank tests are partitions of the symmetric group which have desirable geometric properties. The statistical tests defined by such partitions involve counting all permutations in the equivalence classes. Each class consists of the linear extensions of a partially ordered set specified by data. Our methods refine existing rank tests of non-parametric statistics, such as the sign test and t...
متن کاملOn Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model
In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...
متن کاملA Probabilistic Model of Learning Fields in Islamic Economics and Finance
In this paper an epistemological model of learning fields of probabilistic events is formalized. It is used to explain resource allocation governed by pervasive complementarities as the sign of unity of knowledge. Such an episteme is induced epistemologically into interacting, integrating and evolutionary variables representing the problem at hand. The end result is the formalization of a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1009.1690 شماره
صفحات -
تاریخ انتشار 2010